Transcranial Direct Current Stimulation Combined With Cognitive Training Induces Response Inhibition...

Transcranial Direct Current Stimulation Combined With Cognitive Training Induces Response Inhibition..., Clinical EEG and Neuroscience, Ahead of Print., Clinical EEG and Neuroscience, Ahead of Print.
ObjectiveWe investigated whether the mid-term impact (1 week posttraining) of a “combined cognitive rehabilitation (CRP)/transcranial direct current stimulation (tDCS) program” on the performance of a Go/No-go task was enhanced compared with isolated CRP and whether it varied according to the stimulation site (right inferior frontal gyrus [rIFG] vs right dorsolateral prefrontal cortex [rDLPFC]).MethodsA total of 150 healthy participants were assigned to (1) an Inhibition Training (IT) group, (2) a group receiving active tDCS over the rIFG in combination with IT (IT + IF), (3) a group receiving active tDCS over the rDLPFC in combination with IT (IT + DL), (4) a group receiving IT with sham tDCS (ITsham), and (5) a No-Training (NT) group to control for test-retest effects. Each group undertook 3 sessions of a Go/No-go task concomitant with the recording of event-related potentials (T0, before training; T1, at the end of a 4-day training session [20 minutes each day]; T2, 1 week after T1).ResultsWith the exception of the NT participants, all the groups exhibited improved performances at T2. The IT + DL group exhibited the best improvement profile, indexed by faster response times (RTs) (T0 > T1 = T2), with a reduced rate of errors at the posttraining sessions compared with both T0 and T1. This “inhibitory learning effect” was neurophysiologically indexed by shorter No-go N2d latencies and enhanced No-go P3d amplitudes.ConclusionCRP combined with active tDCS over the rDLPFC appears to be optimal for boosting long-term (one week) inhibitory skills as it induced specific and robust neural changes., admin,

No comments: